Explanations for Natural Language Processing
1. Explainable AI (XAI)

2. XAI for NLP

3. Generating Black Box Counterfactuals using Reinforcement Learning (preliminary work)
1. Explainable AI (XAI)

The higher the interpretability/explainability of a model*, the easier it is for someone to comprehend why certain decisions or predictions have been made.

*Note: Placeholder for possible model reference.
1. Explainable AI (XAI)

The higher the interpretability/explainability of a model*, the easier it is for someone to comprehend why certain decisions or predictions have been made.

Implications for fairness, accountability, transparency of AI systems

*Usually “model” here means something “deep”/non-linear where feature weights/coefficients are not immediately understandable to a human.
Example: Language translation

Where's the beef?
Où est le bœuf?
¿Dónde está la carne?
Where's the beef?
Où est le bœuf?
Sigir eti nerede?
Education

AI
Example: Language translation

Where's the bread?
Où est le boeuf?

It's the data's fault!

The model did it!

Oh no, they're going to ask me aren't they

the model

training data

the explainer model
Let’s take a look at that Transformer model

Vaswani, et al., 2017
http://jalammar.github.io/illustrated-transformer/
Let's take a look closer...

3 types of attention mechanisms
1. encoder self-attention
2. decoder self attention
3. encoder-decoder attention

Each of these is “Multi-headed” (ie, 8 attention heads) run independently in parallel whose outputs are concatenated and linearly transformed into the expected dimensions.

http://jalammar.github.io/illustrated-transformer/
Let’s take a look at attention...

Bahdanau et al, 2015
https://medium.com/@joealato/attention-in-nlp-734c6fa9d983
So how do we “explain” that?

- **Who** are we explaining to:

 An end user? Model developers?

- **White Box vs Black Box:**

 Do we have access to the model *and/or* the data it was trained on?

- **From where in process:** Pre-model, In-Model or Post Hoc explanations

 Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead (*Rudin, et al, 2019 Nature)*

- **Global** model vs **Individual** instance based explanations
Some Types of Explanations

Feature Attribution: which features contributed most for a model’s output
- Path Integrated Gradients (IG)
- Shapley Additive Explanations (SHAP)
- Contrastive Explanations with Pertinent Negatives (link)

Influential examples: which training data most influenced a model’s output
- Influence Functions (link)
- Representer Point Selection for Explaining Deep Neural Networks (link)

Counterfactuals: minimal change that would have led to a different output

Prototypes: find “prototypical” examples as a global summarization
- Deep Learning for Case-Based Reasoning through Prototypes (link)
- Deep k-Nearest Neighbors: Towards Confident, Interpretable and Robust DL (link)

Model Distillation:
- Auditing Black-Box Models Using Transparent Model Distillation (link)
2. XAI for NLP

Common tasks: Sentiment Analysis, QA, Text Generation, Style Transfer, Translation

XAI for NLP tends to be very task dependent

Considerations:
- Syntax, semantic meaning, factual correctness, coherence, etc
- Attention is/is not attribution
- Probing for linguistic meaning of embeddings and models
- Evaluation metrics (BLEU, ROUGE, BertScore, Human Eval)

Analyzing and interpreting neural networks for NLP (workshop at EMNLP)
2. XAI for NLP

- General XAI methods mostly used for classification tasks

 SHAP for feature attribution (feature correlation can be an issue)

 ![SHAP diagram]

2. XAI for NLP

- Integrated Gradients to guide learning and de-bias models. Requires users to specify the target attribution value for tokens of interest.

<table>
<thead>
<tr>
<th>Method</th>
<th>Sentence</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>I am gay</td>
<td>0.915</td>
</tr>
<tr>
<td></td>
<td>I am straight</td>
<td>0.085</td>
</tr>
<tr>
<td>Our Method</td>
<td>I am gay</td>
<td>0.141</td>
</tr>
<tr>
<td></td>
<td>I am straight</td>
<td>0.144</td>
</tr>
</tbody>
</table>

Table 1: Toxicity probabilities for samples of a baseline CNN model and our proposed method. Words are shaded based on their attribution and italicized if attribution is > 0.

\[
\mathcal{L}_{\text{joint}} = \mathcal{L}(y, p) + \lambda \sum_{c} \mathcal{L}^{\text{prior}}(\alpha^c, t^c) \tag{3}
\]

where \(\alpha^c\) and \(t^c\) are the attribution and attribution target for class \(c\), \(\lambda\) is the hyperparameter that con-

Liu & Avci 2019: Incorporating Priors with Feature Attribution on Text Classification
vying for Attention

- Attention is All You Need (2017)
- Attention is Not Explanation (2019)
- Attention is Not Not Explanation (2019)
- Analyzing the Structure of Attention in a Transformer Language Model (2019)
- Is Attention Interpretable? (2019)
vying for Attention

(a) Ground Truth / Prediction
(b) Sentence
(c) Pipeline
(d) Attention Graph
(e) Attention Matrix
(f) Prediction
Explaining **Attention** to humans

6 layers / 8 attention heads

1. Encoder self attention
2. Decoder self attention
3. Encoder - Decoder attention
2. XAI for NLP

- For seq2seq tasks, XAI is less mature.
- Ongoing work on “explaining seq2seq models” for machine translation (looking at LSTMs / Transformers)*
- A lot of work on analyzing meaning of learned word embeddings, what phenomena models are actually learning & how to construct adversarial datasets from statistical cues for robustness purposes
 - Learning Dense Representations for Entity Retrieval
 - BERT RedisCOVERS the Classical NLP Pipeline
 - Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in NLI
 - Probing Neural Network Comprehension of Natural Language Arguments
 - Learning The Difference That Makes A Difference: Counterfactually Augmented Data
Figure 3: A 2D projection of country embeddings (using t-SNE), color coded by continent.
Automated Evaluation still not there

- **BLEU** - Bilingual Evaluation Understudy
 - average of n-gram overlap (1-4) precision between a generated output and reference translations with a penalty for shorter outputs.
 - Good post on [BLEU’s limitations](#) (only use it for MT of documents)

- **ROUGE** - Recall-Oriented Understudy for Gisting Evaluation
 - looks at how many n-grams in the reference translation show up in the output, rather than the reverse (focuses on recall rather than precision)

- **Perplexity**: if you don’t have reference texts (pros/cons)

- **BertScore** ([link](#)): compare token embeddings for distance

- **Human Eval** (gold standard)
Negative Review
Long, boring, blasphemous. Never have I been so glad to see ending credits roll.

Human generated Positive Counterfactual Review:
Long, fascinating, soulful. Never have I been so sad to see ending credits roll.

* Super Preliminary Work !
Setup: Dataset: 2.4k negative reviews / 2.4k positive human generated CF reviews

Initial input: Long, boring, blasphemous. ...

States: (current word, context, part of speech)

Actions: Substitute or skip word

Rewards: based on cosine_distance between initial and current sentence [0,1] and whether the sentiment of the review has changed.

If word is "skipped" -> a reward of zero
 If its "substituted" -> reward is a function of distance between new & initial review

If counterfactual is reached we are done,
 -> a reward of $100 - DM \times \text{cosine}_\text{distance}$ is given where DM is tunable param.

If max number of iterations or substitutions reached
 -> a reward of $-100 + \frac{1}{\text{cosine}_\text{distance}}$
Substitution Mechanism:

1. Mask current word in the review
2. Query Bert with sentence with masked word
3. Get top 5 candidates, filter based on part of speech and prior use
4. Sample from list based on probability weights
5. Replace current word in sentence with sampled word

Each State: \([\text{Word}, \text{Current Sentence}, \text{POS}] = [768 \text{ dim embedding}, 768 \text{ dim embedding}, 20 \text{ dim one hot vec}]\)

We feed this vector into our Policy & Value functions for our Actor Critic model

Actor learns to identify whether or not it’s beneficial to substitute a word
REINFORCE & REINFORCE + baseline
Initial findings and future considerations:

1) Automate analysis of change comparisons between my output and Lipton’s dataset

2) Importance of **context** and **attribution markers**
 - Initial results are able to get CFs but change context words and meaning
 (ie “Nicolas Cage” -> Nicolas Castle)
 - Compare against baseline Liang’s paper (debatable “black box”)
 Delete, Retrieve, Generate: A Simple Approach to Sentiment and Style Transfer (2019)
 - Versus simply preventing change of pronouns

3) Sampling vs Sequential, better pre-training of our actor model,
 - Is Jittering enough to get where we want to go ?
 - Guide with spans/external models (Perplexity / BertScore / Entailment / SpanBERT)?
 - Do I need to distill to be fair?

4) Literature in Adversarial Attack and Style Transfer domains
Donning his new canine decoder, Professor Schwartzman becomes the first human being on Earth to hear what barking dogs are actually saying.

Questions / Thoughts?